\

VA\
/) \

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

a
\

/,

y i
=\
(

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

2

OF

3

A

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

The Stress Distribution near a Loading Point in a Uniform
Flanged Beam

E. W. Parkes

Phil. Trans. R. Soc. Lond. A 1952 244, 417-467
doi: 10.1098/rsta.1952.0011

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand
corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1952 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;244/886/417&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/244/886/417.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

PHILOSOPHICAL
TRANSACTIONS

a
A
JA

SOCIETY

ot
NP
O H
<=
= O
= O
= w

A A

OF

OF

Downloaded from rsta.royalsocietypublishing.org

[ 417 ]

THE STRESS DISTRIBUTION NEAR A LOADING POINT
IN A UNIFORM FLANGED BEAM

By E. W. PARKES
Engineering Department, University of Cambridge

(Communicated by Sir Geoffrey Taylor, F.R.S.—Received 15 August 1951)
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The elementary theory of bending, which is the method by which the stresses in a uniform flanged
beam subjected to transverse loading are usually determined, leads to certain incompatibilities of
displacement and stress distribution near a section of the beam at which load is applied. The
present paper endeavours to remedy these deficiencies. Two main cases are considered: that in
which the beam is loaded through the web and that in which it is loaded through the flanges. In
both of these the analyses lead to stress concentrations in the outer fibres of the flanges, and it
is found "that the maximum stress concentrations, which occur at the loading section, may be
expressed with an accuracy sufficient for most engineering purposes by means of simple formulae.
For both cases, maximum concentration factors occur in short beams having large flanges and
thin webs.

Results of strain-gauge tests carried out on mild steel beam specimens are presented which
show very good agreement between the predicted and experimental stress distributions in the
flanges, and a further part of the paper compares the present analyses with other recent work
on the subject.

NOTATION
4, area of boom
C,D coeflicients in stress functions
E Young’s modulus
F function in Fourier’s integral theorem
F, * statistical function
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NS
ol
Q

shear modulus

semi-depth of beam

second moment of area of beam

second moment of area of boom about its own neutral axis
(147) (3—7) I,|"

2 t"}

function in Winny’s analysis

semi-span of beam

applied bending moment at any section

bendihg moment in the boom at any section

end load in the boom at any section’

value of ¢(x)

strain-gauge reading when beam is subjected to pure bending

strain-gauge reading when beam is subjected to any other loading

applied shear at any section

shear in the boom at any section

shear stress at the origin

2h/n
f udy atx =0
0

RO EENR N SNNTQ

[

T, . .
4} symbols defining exponential stress systems

=

load applied to beam or to a flange
distance from web attachment to neutral axis of boom
distance from neutral axis of boom to outermost fibre

TEION 9 N&~®

S

1/Q—x
eng. suffix denoting engineers’ theory

exp. suffix denoting exponential stress system

f,g non-dimensional functions defining stress concentration in outermost fibre
h semi-depth of web between web-boom attachments

k function in Winny’s analysis

[ length of beam considered in analysis

m odd integer defining harmonic stress system

n integer defining exponential stress system

p number of experimental points

q experimental standard deviation

g(x) normal loading

r percentage change of resistance of strain gauge
Ttot. total range of r

ss8 suffix denoting superimposed stress system

¢ - thickness of boom or web

‘Student’s’ statistical ratio
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STRESS DISTRIBUTION IN A FLANGED BEAM 419
ty thickness of web
Uy v displacements in the directions of x and y
Uy, U, displacements of boom aty = 4
u,, v,  displacementsof webaty =#
w load increments
X, Y co-ordinate axes
z xn/2J
r value of o, atx = 0,y = £
A maximum value of 7, aty = £
/I;’ o XE’} symbols defining harmonic stress systems
.
v stress concentration factor
a,f decay or frequency factors in stress functions
4 function defined in part I1
n aJ
0 slope of regression line
A coefficient of variation
Y/ number of strain gauge readings
v Poisson’s ratio
3 constant in regression line equation
p _experimental arithmetic mean
7,0,  directstresses
(¢,)y  outer fibre stress
(0,)s stress concentration—i.e. stress in excess of that given by engineers’ theory
Ty shear stress
[V stress function
X function in Fourier’s integral theorem
v universe standard deviation
units Lb. and in. unless otherwise stated

INTRODUCTION

The elementary theory of the bending of beams (known in the aircraft industry, as
‘engineers’ theory’) suggests that the direct stresses at any section of a uniform beam are
proportional to the applied bending moment. For sections remote from points of load
application this theory gives accurate predictions of the stresses and displacements. Near
a loading section, however, it is necessary to investigate the problem in greater detail.

In recent years Taylor (1949) and Winny (1950) have offered approximate solutions.
Taylor considered a beam subjected to two equal loads, applied to each flange, and by
assuming the web to be shear-carrying only obtained the direct stresses in the flanges from
the equations for compatibility of horizontal and vertical displacement at the web-boom T
junction. Winny used a somewhat similar method, but introduced the vertical compressi-
bility of the web and the stiffness of the rivets joining it to the flanges.

1 The words ‘boom’ and ‘flange’ are synonymous.
54-2
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420 E. W. PARKES ON

The present paper is more comprehensive than the previous ones in that it considers
both load applied entirely to the web and any combination of load applied to the flanges.
The web is considered as an isotropic plate capable of carrying direct and shear stresses.
In the case of web loading, an approximate stress-function method is used, the stresses
being everywhere compatible but the strains at the web-boom junction only approximately
so. The analyses for flange loading are exact within the limits of the assumptions.

The paper is divided into four main parts: the analysis for web loading; the analysis for
flange loading; experimental work; and a comparison of the results with those of Taylor
and Winny.

PART I. BEAM LOADED THROUGH THE WEB
1. THE INCOMPATIBILITIES IN ENGINEERS’ THEORY

We consider a uniform flanged beam, symmetrical about its neutral axis, having the
dimensions shown in figure 1. At some section of the beam, taken for convenience as our
origin of co-ordinates, there is applied a transverse load W. Then, since we assume that at
sections remote from points of application of load, engineers’ theory gives a close approxi-
mation to the stress distribution, we may without loss of generality apply temporary loads
(to be removed later) at sections far from W, such that the shear forces in the beam on
either side of W are § = +1W. The overall bending moment due to I at any section of the
beam will be taken as M, and it follows that § = —dA/dx. Then according to the elementary
theory of bending the stress system (which throughout the paper will be considered to be
two-dimensional) is given by

M
0, = Tya
o, =0, (1)

S
Toy = — I_tf ty dy.

On applying this stress system to the web (treated as a flat rectangular plate) we obtain
the appropriate displacements as

My 4. Sy —y?)
“ —f 7L
—_J'x My _Kj\_/[_y_Z__g_{A( +h>+tw/z} (2)
=)o BT T R T G 1
our rigid-body conditions being that « and v are zero at the origin and # is zero at x = 0,
y =h.

The boom displacements, by similar methods, are obtained as

_["My 4 S(y—1) Hlf
”“LET Glf,, f‘d dy+GIa+b) ty dydy,

—_ [ v My?
”"fofo'E?dxdx OET GIa+b) tydydy,

the rigid-body conditions being u = 0 at x =0, y = £ and H, and v, = 0,4, at ¥ = 0,
y=h.

(3)
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'STRESS DISTRIBUTION IN A FLANGED BEAM 421

By inserting practical figures in equation (3) it will be found that the boom displace-
ment terms in § are quite negligible both compared with those in A and with those in $
in equation (2). Accordingly, it will be sufficiently accurate to take the boom displacements

as
U= f Ey dx,
(M v My?
V= -—fo OEjdxdx————QEI ,
a result which would be achieved by treating the boom as a beam obeying the elementary
theory of bending and using the rigid-body conditions u = dv/dx = 0T and v, = Vyep
at ¥ = 0. In future we shall in fact treat the boom by this method, an approximation which

can be justified arithmetically at any time by investigating the magnitude of the shear
distortion terms as given by equation (3).

(4)

Ay, 1,
) n.a.of "'z“‘—""‘
' bo-om Y-t/ a
t>r€

T ——->.<———=t:—-——->

>le > —>-<— :

g T
- ™ oF

Ficure 1. Dimensions of beam.

Comparing equations (2) and (4) it may be seen that at the junction of boom and web
the « displacements are compatible, but the v displacements leave a gap

S t,h?
vty = — 7| As(at )+ B } (5)
At the centre line of the beam (x = 0), u,,, is zero at y = 0 and %, but elsewhere has values
_ Sy(h?
Uyweb = y(GGI ) : (6)

Engineers’ theory of bending thus leads to incompatibilities of vertical displacement at
the junction of boom and web and of horizontal displacement at the centre line of the beam
(the loading section).i In addition, the distribution of shear associated with this theory is

1 Strictly, dv/ox = vSy?/2EI, but the difference from zero is negligible.
% Auxiliary calculations have shown that of these two errors the former is by far the more important.
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422 _ E. W. PARKES ON

untrue at theloading section. The load W will be applied by means of a patch plate attached
to the centre portion of the web, and the shear stress in the outer portions of the web and
in the booms will be zero.

In the following sections of the paper we endeavour to develop an analysis to remove
these incompatibilities of displacement and load distribution. As above, we shall treat the
boom as a beam obeying the simple engineers’ theory stresses and displacements and the
web as a flat rectangular plate obeying the general elasticity equations for plane stress.

2. SELF-EQUILIBRATING STRESS SYSTEMS APPLIED TO A FINITE LENGTH OF BEAM

As a means of compensating for the errors inherent in engineers’ theory of bending, we
consider the application of self-equilibrating stress systems to the finite length of the web
between x = 0 and x = /, where [ is for the moment an arbitrary parameter. We shall use
the trigonometric solutions of the stress-function equation, and these fall into two main types,
those leading to an exponential loading between web and boom and those leading to a
harmonic loading.

The first type may be represented by the function

¢ = sinay(C, cosh ax + C, sinh ax+ Cy x cosh ax 4 C, x sinh ax) (7)

(cosay terms are zero from considerations of symmetry), where

nm
= o5 (8)
giving rise to the stress system
o, = —a?sin ay{C, coshax -+ C,sinh ax -+ C; x cosh ax+- C, x sinh ax},
7, = sinay{C)a? coshax+ Cya?sinh ax+ C3a(2 sinh ax+ax cosh ax)

+C,a(2coshax+axsinhax)}, »  (9)

Ty = —COS zxy{C a sinh ax -+ C,a cosh ax + Cy(cosh ax -+ ax sinh ax)
+C,(sinh ax +ox cosh ax)}.

Then if the portion of the web beyond x = [ is not to be loaded (a desirable cond1t1on for
self-equilibrium) it is necessary that

0,=T, =0 at x=1, (10)
i.e. that C, coshal+C,sinh al+Cylcoshal+C,lsinhal = 0 (11)
and  Cjasinhal+ C,acoshal+ Cs(cosh al+alsinhal) 4+ Cy(sinhal4-alcoshal) = 0.  (12)
Further, if the shear stress at the origin is to be 7,
" —Cy?—Cya=T. (13)

We now have three equations for the determination of the coeflicients C, ... C,. For our
-remaining condition we must consider two cases. First, if nis even, o, is zeroatx = [,y =k
(ideally o, should be zero everywhere at x = [ to agree with engineers’ theory, but in prac-
tice we content ourselves with ensuring that it is so at the most important point, the web-
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STRESS DISTRIBUTION IN A FLANGED BEAM 423

boom junction), and we use the remaining equation to impose a known displacement at
the centre line of the beam. This displacement is conveniently expressed by its integral

2h/n
Ef udy = U, (14)
0
whence G149~ C 10} = U. (15)

Secondly, if z is odd, ¢, is not necessarily zero at x = [, y = &, and we use our final equation
to make it so,

C, a2 cosh al+Cya?sinh al+ Cya(2 sinh al+al cosh al) + C,a(2 cosh al+-alsinh al) = 0. (16)
From equations (11), (12), (13) and (15) the coeflicients are obtained as (z even)

1
€= 402(al +sinh al cosh al) (743

1+v) a?2+2(1 —v) sinh? al}+ Ua?{sinh? al — a?/?}],

Cy = g [~ TR(1—1)}—Ua?],

) ro(17)
C; = v [—T{2(1+v)}+ Ua?],
— 1 (o] — 2 4} — Us2dsinh?
C,= Za(al Fsinh ol cosh al) [T{2(1—v)+2(1+) cosh?al} — Ux?{sinh? al}], }
and from equations (11), (12), (18) and (16) as (r odd)
C. — T'(al coshal—sinhal) )
1 ol sinh al ’
C. - T'(cosh al —alsinh af)
2 a3l sinh al ’ | 18
_ —Tcoshal (18)
3 a¥lsinhal’
T
C4 - a_ZZ- J

Having evaluated the coefficients C;, C,, Cy and C,, the displacements may be deter-
mined. (We use the same rigid-body conditions as previously, # = v = 0 at the origin,
u=0atx=0,y =h.) Inparticular, atx =0

Eu = {Cya(1 +V) —Cy(1—0)} %sinoclz—sinocy}, (19)

and aty = &,
Eu,, = —sinah[C,a(1+v)sinhax+ Cya(1+v) (coshax—1))

+C4{(1+v) axsinhax— (1 —v) (coshax—1)}
+C{(1+v) ax coshax — (1 —v) sinh ax}],

Ev, = —cosah[Ca(1+v) coshax+ Cya(1+v) sinh ax
+Cy{2sinh ax+ (1+v) ax cosh ax} ( (20)
+Cy{2cosh ax+ (1 +v) ax sinh ax}]
+Cra(1+v) +2C, _
—{Cya(1+v) ——C}(l—v)}%sinalz.
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424 E. W. PARKES ON

We now have the web unloaded at x = /, subjected to a known shear (in terms of 7") at
x = 0 and having along its upper and lower edges (y = 4-£) certain direct and shear stresses
determinable in terms of the coefficients. These latter stresses, multiplied by the web
thickness (known in the aircraft industry as fluxes and having the units of Lb./in.) must now
be applied to the boom with their signs reversed. The boom, as before, is assumed to be held
with zero slope at ¥ = 0 and to be a cantilever beam obeying the elementary theory of
bending. We find that there is an end-load in the boom

P, = —t,acos ah{C) cosh ax+ C,sinh ax + Csx cosh ax + Cy x sinh ax}, (21)
and a bending moment |
M, = t,(ax cos ah+sinah) {C, coshax -+ C,sinh ax+Cyx cosh ax 4 C,xsinhax}.  (22)

Denoting the boom displacements at y = £ by a suffix &
Eu, =—1 [{i%—a—z}-cos ah+ - sin /z:l l:C inh ax 4 Cy(cosh ax —1)
v = w4, T, Al | Rt 2608
+ % (ax sinh ax —cosh ax 4 1) —[—% (ax cosh ax —sinh ocx):' ,

sinah|[C,

Ev, = ——%’[acos«xlﬂr—a z (coshax—1) —l—% (sinh ax —ax)

- + 5—23 {ax(coshax+1) —2sinh ax} -+ o% {ox sinh ax —2 cosh ocx}:l +[Ev,] -0

The complete stress system in web and boom is entirely self-equilibrating, since its only net
‘external’ effect is to change the distribution of the shear stress at the centre line.

We return now to the second type of stress system (that producing harmonic loading
between web and boom) which has only two arbitrary coeflicients, since from considerations
of symmetry the stress function must this time be chosen in the form

¢ = cos fx(Dy sinh fy + D,y cosh fy) (24)

(terms in sinfx are ignored since their function, which is to introduce displacements at
x = 0, has already been fulfilled by the exponential stress systems), where

p="0 (25)
generating the stress systerh in the web
o, = cos fx{D, f?sinh fy + D2 f(2sinh By +fy cosh fy)},
7, = —f*cos fx{D, sinh fy + D,y cosh fy}, (26)
7., = B sin fx{D, f cosh fy+ D,(cosh fy + fy sinh fy)}.
We may make o, and o, zero at x = [ by choosing
m=1,3,5, ..., (27)

but from the form of the function 7,, cannot then be zero.
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STRESS DISTRIBUTION IN A FLANGED BEAM 425

If the value of ¢, at x = 0, y = A is to be I" and the shear stress at y = £ is to attam a
maximum value of A D, and D, may be evaluated as
— I'(cosh fh+ fh sinh fh) — Aph cosh fh

f*(sinh fh cosh fh— fh) ’
_ I'cosh fh+ Asinh fh
27" B(sinh fh cosh fh—ph)

This time it is convenient to substitute for the coefficients analytically and we obtain the
displacements at y = £ as

D, =
(28)

Bu, = gk ﬁ}fl;fﬁ ﬂh' gy LL{B=+sinb fh cosh fh-+v(fh—sinh fh cosh fh)}
+ A{2sinh?fh}],
cos fix
Evw = psinh B cosh ph— gy L1 12 cosh® B} L (29)
+ A{fh+-sinh fk cosh fh+v(fh—sinh fh cosh fh)}],
1 .
~ B(sinh fh cosh fi— k) [I'{2 cosh fh+ (14-v) fhsinh /S’h}
+A{(1+v) fhcosh fh— (1 —v) sinh fh}]. J
u is everywhere zero at x = 0 from our decision to use terms in cos fx only.
Applying the reversed fluxes to the boom we find
p,— = Atwﬂ cos fx ’ (30)
| = (Afa— F>,6’2 cos fx -+ I/;z (I—x)sinpl, | (31)
whence Fu, — t, sm £, 8in fx I:Fa AP { 1 +a21A } _ Tat,sinfl . (l—é a_c) ’
b P, 2 (32)
Ev, — tw(l cos fx) (T— Afa}— Iz, s1n/)’l; ( _§)+[va]x=0.

£,

This time the complete stress system in web and boom is not self-equilibrating, since
there is a residual shear in the web at x = /. We shall in the following section introduce
equations ((40) and (41)) to ensure that for the harmonic stress systems as a whole

T, =0 at x:l,yzlz,}

h (33)
and f T,dy =0 at x=1
0

3. COMBINATION OF SELF-EQUILIBRATING STRESS SYSTEMS TO
COMPENSATE FOR THE ERRORS IN ENGINEERS’ THEORY
It will be remembered from a previous section of the paper that the errors in engineers’
theory which we wished to correct consisted of a gap in the v displacement between web
and boom, a warping of the web at the centre line and an unsatisfactory distribution of
shear stress at the loading section. The final stresses in which we shall be principally inter-
ested will be those in the boom at x = 0, and so in correcting the errors of the elementary
theory we must endeavour to ensure accurate values for these quantities. The boom
stresses depend on du,/dx and 90%,/dx? and accordingly in our analysis we shall try to make

VoL. 244. A » 55


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

426 E. W. PARKES ON

u, and its differentials up to 9%,/dx? and v, and its differentials up to d%,/dx3 correct at
x = 0. In addition, we shall make the web and boom coincident at x = /, and in order to

N h
correct the warping of the web we shall make du/dy = 0 at x = 0, y = h and f uydy = 0 at
0

h
x = 0 (this latter is chosen in preference tof udy = 0, as it seems to offer hope of a better
0

bending moment agreement). The shear-stress distribution at the loading section will be
dealt with by making S, = 0Oatx = 0 (7,, = 0atx = 0,y = A follows from two of the previous
conditions).

We consider first those errors which can be corrected by means of the exponential type
of stress systems. At the loading section engineers’ theory gives the following values to
functions which should from considerations of symmetry or from our load distribution
requirements be zero: V

(1) %% = E%S'I{Ab(a—l—/z) -ll%h—z} s| These two together, wheﬂ

) ( u ) j i :on:cgei,y inzure that
ay),. = 3GI "y

Q f:uydy =

(4) S, =—~{Aba(a+/l)+lb},

(5) =2,

(6) Ttem 2,

(1) Jo=a

®) =g

Numbers 5 and 7 are not independent conditions—they are satisfied provided 1, 2 and 4
are correct.

These errors can all be compensated by the introduction of four exponential stress
systems (n=1,...,4) defined by the symbols (73), (T, U,), (7y) and (7,,U,). The

equations which must be satisfied are conveniently expressed as follows:

2/z h

s
Sy = —3{dpalath)+ L}— 222 Ty 20 Ty = o, (34)

l wl
9t ah {2vcosh2h—l—(1—|—v)2hsmh2ﬁ}

z(w u)_____t_w_{ dZAb} _ . wa___
9 k2 A, 1+ I, (T5=T) - T, nl, Isi 7l
smh~h
, {2v cosh3Wl+(l+ )37Tl sinh 3771}
T 2t,ah 2h 2h —0, (35
s 3nl, 3ml o )

{sinh —- o
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ml ol . ol
{2cosh—2—z——(l+v)7lsmh—é7l}

E(a_u)y_,, _2(1+v) Sk 1 (%)2 (U,—4U,) + T, 4k

dyl,- 31 2 ) nl
7T lsmh—é—ﬁ
ot B0 B
3nl
972 sinh —
h
{QCosh —(1+ ) snhﬂl}
k 2
Ef uydy-m—(lg%)&—i—h(U U)+T4/z4(—1——%) 2 z h
0 wzlsinh—%
1 4 {2 cosh 327;11 (1+ )?;lemh 327;zl>
_T 4h4( ) —0, (37)
3 on’ 972l smh~_g
2h
ov, du\ —SA4,(a+h) B
R »
Ed3(v,,—v v\ (m\*
Bt — (143) () @a—100) —00) 30) () (To—aT)+ (T~ 7))
2/ztw T1+2htw T,—0. (39)

On substituting equation (38) in equation (35), we have three independent pairs of equa-
tions, i.e. (34) and (35) may be solved for T} and T3, then (36) and (37) for U, and U,
and finally (38) and (39) for 7, and 7.

Having determined the magnitudes of (T7,), (T, U,), (T}) and (T, U,) we may evaluate
the displacements due to these systems and also the new shear stress distribution at the
centre line. This latter, and the values of « at x = 0, will be unchanged by any subsequent
analysis, and so in a practical example these curves should be examined to ensure that
they are satisfactory before proceeding further.

Due to the combination of engineers’ theory and the exponential stress systems, errors
additional to those quoted above are introduced into the displacement terms. In particular,
atx =0, p

(1) k %C (uw—ub) +0,

02
(2) 5 (0a—0,) 0,
and at x =/ (3) wu,—u,=+0,
(4) v,—v,=+0.

We may remove these errors by means of stress systems of the harmonic type, since because
of their symmetry in x these systems will not alter the functions that we have previously
55-2
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corrected in equations (34) to (39). Three harmonic stress systems are used (m = 1,3 and 5)
defined by (I';, A)), (T, A;) and (T, A;), the additional two variables being used to satisfy
the conditions that the web shear at x = /, y = 4 should have its engineers’ theory value
and that the boom shear at x = 0should be zero.t The appropriate equations are as follows:

3 A(-1y <o, (40)
1

[['{2cosh?ph} + A{fh+sinhfhcoshfh

{E(vw_vb) x=l}eng.+exp._ l,%, 5,5)(81111’1,5)}1 COShﬂ}l --,b)}l)
+o(fh—sinh i cosh p1)}] — 3 ﬂ4 o (D A pa} - f% /g( i — o, (42)
(—1)kmD)
W) et exp. 123 5 f(sinh fh cosh ph— fh)
X [[{ph-+sinh fh cosh fh+v(ph—sinh fh cosh fk)}+ A{2 sinh? fh}]

+3 5/3,3[F“ Aﬂ{1+ I }]( i(m+l)+at h 2,3 5/?( 1)in — 0, (43)

{E(u

02 b
{E 952 (v — Ub)x=o} - 23 s(sinh gk cosh fh— fh)

x [I{2 cosh? ph} + A{fh+sinh fh cosh fh+ vv( fh—sinh fh cosh fh)}]

- 3 g T-pg=Y s D, (44)

exp.

P 1
{E% (uw_‘ub)x=0} + g’ 5 (sinh Sk cosh fh— fh)

exp. 1,
X [T{fh+sinh fh cosh fh+v(fh—sinh fh cosh fh)} 4+ A{2 sinh? fh}]

1%5,5 [F‘Z jz}lﬂ{1+azlA }:I atbllgxs/}:( LI = 0. (45)

In virtue of equation (41), the last term in each of equations (42) to (45) is zero, and the
solution is most readily obtained by substituting (40) and (41) in (42) to (45) and then
solving the ensuing four simultaneous equations. Having determined (I'}, A;), (I's, Aj)
and (I';, A;) we may then evaluate the displacements due to the harmonic terms.

The final displacements obtained by the addition of those due to engineers’ theory,
the exponential stress systems and the harmonic stress systems satisfy the following con-

T We are apparently wasting a variable here, since §, =0 at x = 0 has already been used as a condition
for the exponential systems and in theory it is only necessary to make S, = 0 at x =0 for the two systems
combined. In practice, however, the analysis has been found to give much better results when the condition
is applied to each set of systems independently.
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ditions, which are not all independent. Those asterisked are conditions which the stress
distribution of the elementary theory of bending does not succeed in satisfying:

(1) u,=u,=0 atx=0,
ou,  Ou, _
(2) i Pl at x =0,

0%u,, 0%, *

(3) W = Fr5 i at x = O,
(4) U, = U, at x =/,
(5) v, = U, atx =0,
(6) %i%zo atx =0,
2 2
(7) %%=%’ atx =0,
3 3
(8) %;’—;vz%i atx = 0,
(9) v, =0, atx =/,
(10) g—zi Catx=0,y=~h,
h
(11) f uydy £ 0 at x = 0.
0

Further, the stresses derived from these final displacements satisfy the following conditions:

(12) The fluxes between web and boom are everywhere in equili-
brium, and the internal stresses are always in equilibrium with the
overall applied shear and bending moment.

(13) | 0, = (ax)eng. at x = la
(14) g, = (‘Ty)eng.= 0 atx=1[,y=nh,
(15) Txyje—:() atx=0,y=h,
(16) Ty = (Txy)eng. atx = l: Y= h’a
h h
(1) [ 7ydy=[ gty atx=1
0 0
(18) S, =0 at x = 0,
(19) Sy = () eng. at x = 1[.

We have previously investigated the distributions of z and 7, at x = 0. Similarly, in a
practical case, we must now determine the values of u, v and 7, at x = [ to ensure that they
do not differ appreciably from engineers’ theory. As a final check on the accuracy of the
calculation, u,, u,, v,, v,, 0u,/0x, du,|dx, 0%v,,/0x? and 0%v,/0x% should be evaluated for the
complete range of x. Provided the web and boom curves are in reasonably close agreement
we may say that the imposed stress systems do, at least in an overall sense, compensate for
the errors in engineers’ theory.
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As far as stress concentration is concerned, we shall generally be interested in the stresses
in the outer fibres of the boom, obtained as

_(du, 0%,
=E|5"— oy 4
(0 =BGt =@ +5) 52| +(0)nene (46)
where sss is a suffix denoting the superimposed stress systems. The stress concentration
factor W' is then given by

du,, 0%,
E{G2—(at) 7:;72}_

(Ux)H eng.

g (00)n =1+

ax) H eng. (47)

4. A NUMERICAL EXAMPLE

As a practical example to which we may apply the above analysis we consider the beam
shown in figure 2. This represents an undercarriage girder for a large aircraft, and it has
been designed on the assumption that the material is light alloy having a permissible working
stress of 15 tons/in.2 and a Poisson’s ratio of 0-3.

Ap=3in*
Ib =1in*
Ry 5=0-7
a=1-0
H=11-7
h=10-0
| PP
t,=0-1
Y {
h=10:0 fully factored
H=11-7 load =40 tons
Y
a=1-0
J "7,'%077

Ficure 2. Undercarriage girder.

As a first measure we must determine the exponential coefficients (77), (T, U,), (T%)
and (T, U,) from equations (34) to (39). All the quantities are known except the length of
beam considered, /. The choice of / is a matter of experience. In the present example three


http://rsta.royalsocietypublishing.org/

A\

/ y

A

a
{ B
L 2

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
V. \
b

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STRESS DISTRIBUTION IN A FLANGED BEAM 431

preliminary calculations were made, using a simplified analysis, for values of [ of 4, £ and

$h (5, 10 and 15in.), it being eventually decided from comparisons of the web and boom

displacement curves at their junction that the last was the most satisfactory. It would seem

that / must be sufficiently large so that the exponential terms can die away satisfactorily,

without being so large as to make the analysis insensitive. The value is not at all critical,

changes in / of as much as 50 9, producing only small variations in the stress distribution.
The values of the coefficients obtained are as follows:

Tl = “‘0'084S,
T, = —0-5778,
T, = —0-05L5,
> (48)
T, = —0-1618,
U,= 2428,
U, = —0-01S. )

The distributions of 7,, and « at x = 0 which are derived from these values are compared
with the original engineers’ theory distributions in figures 3 and 4. The associated dis-
placements, slopes and curvatures are obtained as

%= 0: E%“—w — 00318, ]
X
E%“é = 01368,
¥ g 49)
EZ% _ _ g.3388 (
0x2 >
0%, .
i = 01495;
x=1: Eu,=  0-222S,
Eu,=  0-8708,
Ev, — —14-925, (50)
Ey,=  9-46S.

We must next solve for the harmonic terms, and on substituting equations (49) and (50)
in (40) to (45) we obtain

| A — A+ A =0,

I — 305+ i1 =0,

— 8845 I\ —16:82 T[y—516 Iy4595 A;+085 Ay+0-124A;,—24-385 — 0,

— 595 I\ + 085 Ty—0-124 Ty+43-5 A,—7-84 A, 1432 A,— 0-6485 — 0

— 9681 — 166 I';—1-41 I'y+ 0-651A,;40-084A;-+0-034A,— 0-4875 =0

— 623, — 0-2675—0-0649T, 4 456 A;+2:46 A,+2:26 A,— 0-01055 = 0

- (51)

b

b

b
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whence I'} = —0-0268S,)

[, = —0-1076S,

F5 = - 0'04545‘,

(52)

A, = —0-02278,

A = —0-0088S,

A= 0-01398.

J'-
-

engineers’ theory ] |
, |

analysis of part 1

x=0 x=l

Ficure 3. Distributions of 7,,.

-
- -
P -
P 7
( /
\ {
AN N
~ ~
~
N A~
engineers’ theory ~o
~
~
~
~
~
. —
analysis of part I , ™
7
7
P -~
/ -
P
Pt
x=0

Ficure 4. Distributions of .,
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We are now in a position to undertake the checks mentioned at the end of § 3. The dis-
tributions of 7,, and u at x = / are shown compared with those at x = 0 in figures 8 and 4.
It will be seen that we have succeeded in obtaining satisfactory centre-line distributions
without appreciably affecting the values at x = /. The distribution of v must also be sensibly
that of engineers’ theory, since (as will be seen from later curves) the rate of change of shear
is small at x = /. As a further point it should be remembered that any corrections to the final
stress distribution which might be necessary due to the remaining small incompatibilities
at x = [ would be a maximum at this section, and that their effect at x = 0, the section at
which we shall be most interested in the stresses, would be quite negligible.

web
“poom =

Uggs ™

X —>

Ficure 5. Comparison of u, and u,.

Ficure 6. Comparison of v, and v,.

The final values of u,, 4, v,, v, 0u,/0x, 0u,/0x, 0*,,/0x* and 0%v,/dx? are plotted in figures
5 to 8. It should be noted that these are the curves for the displacements due to the super-
imposed stress systems only, and therefore discrepancies between them are second-order
effects as far as final overall stresses are concerned. The curves of v, and v, are shown closing
the engineers’ theory gap of equation (5); as with the other functions, the displacements

of the elemeﬁtary theory, v = —fxfx(M/EI ) dxdx in this case, must be added to obtain
0Jo

overall values. It will be seen that the agreement between the curves for web and boom is
sufficiently close for the values of the boom outer-fibre stress due to the imposed stress
systems, plotted in figure 9, to be treated with confidence. The stress-concentration factor
at the origin is obtained as A

Y= 1+0'902. (53)
For the particular case of the undercarriage girder, L/k = 5, and ¥ = 118, the outer-fibre
stress being 17-4 tons/in.? compared with 14-7 tons/in.? according to engineers’ theory.

VoL. 244. A. 56
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The girder would have an actual reserve factor of 0-86, compared with an apparent one
of 1-02.

The total boom outer-fibre stress is plotted in figure 10, where it is compared with the
engineers’ theory distribution. It will be noticed that our present analysis gives a stress
concentration which is distributed over several inches of the beam, i.e. the concentration
is not of the ‘point maximum’ type which can be relieved by a very localized yielding of
the material. :

Oug, [ox >

X —>

Ficure 7. Comparison of ou,/0x and ou,[ox.

0%,y [0x2 —>

X —>

FIGURE 8. Comparison of 0%v,,/0x? and 0%v,/0x2.

010 " - do,/ox equal and
N \ ’ opposite to that of
= engineers’ theory
=
b:-c 0-051
1 I
0 5 00— 15

x (inches)

Ficure 9. Outer fibre stress due to superimposed stress systems.
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STRESS DISTRIBUTION IN A FLANGED BEAM 435

Figures 11 and 12 show the cross-tensile and shear fluxes between the boom and the web,
the area under the former curve being, of course, equal to —2S, ... The general shapes of
the curves conform with what might be expected from simple physical considerations.

,h
|

1 engineers’ theory
W partll
—=0-61- v~ partl I \
" | analysis of part I
5 A\ Q (W applied to web)
—0-4F A analysis of part II
7 \Y\:\ (W applied to one
Nl /\. O fl
é« /. ;Z( - D780 ange)
b -0-2F ) /
| 1 |
50 25 \0[ zinches 2% 50
A \"" “'/'
SN VT
N~ Tt/ 7
N\ D ,
N

Ficure 10. Total fibre stresses.

o t{W
0-01r

L_/\ ] 1 /|\| x (inches)

10 15

Freure 11. Cross-tensile flux between web and boom.

Figure 13 shows the final distribution of ¢, at the loading section and compares this with
the distribution according to engineers’ theory. It will be seen that the maximum variation
from engineers’ theory occurs in the web at y = £, although this is, fortunately, in the sense

of reducing the overall stress.
56=2
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Ty t/W
engineers’ theory ————————-/

<~ 1002
analysis of part I

|« (inches)
15

A A

OF

) ¢

S

SOCIETY

OF

analysis of part I *
engineers’ theory Oz
Y
boom
Ficure 13. Direct stresses at the loading section.
5. GENERAL CONSIDERATIONS
|
The problem of the stress distribution in a uniform flanged beam effectively depends,
apart from simple multiple relationships, on four parameters:
a 4, 1,
Vs 75 T35 TJ3. - 54
Bk, W, (64)
In the present paper it will be assumed that v = 0-3, the usual value for steels and light
alloys, so that we are left with three parameters for investigation. Study of standard section
tables and examples from aircraft design suggested that therange of these parameters which
is of practical interest was as follows: a )
0<5<01,
h
4
1 <,7t-’:;<9, (55)
. ]b
0-003 <Z§E)< 0-03.

7
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Accordingly in the derivation of general curves a ‘central’ point (0-05, 3, 0-01) was first
taken and the stress concentration in the outer fibre of the boom at the loading section was
calculated. It was found most convenient to express this in terms of two non-dimensional
functions f and g, where

el )
= 6
(Ux)H (ax)H eng. th [‘f{}l }lt 3t } /Z g b’ /Zt ’ }3¢ (5 )
—-0.3 — — ‘ —
B ot
—0-2 —00-03
o 0-003
°—ts 0001
—-0-1F — 003 —
0 %03
e et 011 N S R B B N I
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
A4,/ht, .
alh=0 alh=0-05 alh=0-10
Ficure 14. Function f. Values of I,/h%, are given against the curves.
@, basic calculations; o, check calculations.
— 0-003
~3r __——o001 [ — 0-003 ‘
o ¢ ; — 0003
003 ———0001 | © .
‘ o—=¢ — 0-01
2~ B — 003 [ —o
4 ' — e 0-03
— 1... foe e
] ] l l ] I | ] ] ] | | ] ] ]

Ab//ztw
alh=0 alh=0-05 alk=0-10

Ficure 15. Function g. Values of I,/h%, are given against the curves.
@, basic calculations; O, check calculations.

Starting from this central point, each parameter was varied in turn to the extremes of its
range until altogether seven sets of values of f and g had been obtained. General curves
were then calculated on the assumption that dfJd(a/h) was a function of ¢/ only and simi-
larly for g and the other parameters. As a check on the validity of this assumption two further
calculations were made for the points (0-10, 1, 0-003) and (010, 9, 0-03). It was found that
the values of fand g predicted by the general curves and those obtained by direct calculation
were in close agreement.* The general curves of fand g are given in figures 14 and 15, and

* By extrapolation to [,=0, our curves are also found to be in good agreement with the solution
obtained for this case by Hildebrand & Reissner (1942).
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the outer-fibre stress at a loading section in any uniform flanged beam may be calculated
from them by means of equation (56).

On studying the curves in detail, three relationships become apparent: g is practically
independent of a/k and A,/ht,; and (f—ag/k) is generally small compared with bg/k, as
would be expected, since one represents the stress due to end-load and the other that due
to bending. Accordingly it follows that

' W, I
(010 = (0.1 ene.— g1 s (57)
and on plotting the log-log curves of the various parameters, we find that this relationship
may be very closely expressed over the whole of the range considered by

' Wb [kt
(01 = (0ireng.+ 03 3 47" (58)
3
or W=l et b 59
’ (Ux)H eng. ( )

If we assume the beam to be simply supported on a semi-span L and centrally loaded,
Wol+1-2L71h0A4, I e}, (60)*

so that the maximum departures from engineers’ theory will occur in short beams having
large booms and thin webs—conclusions which might be expected from physical con-
siderations.

PART II. BEAM LOADED THROUGH THE FLANGES

6. EQUAL AND OPPOSITE LOADS ON THE FLANGES
6-1. Introduction

In part I we have considered the problem of the stress distribution in a flanged beam
loaded by means of a patch plate attached to the web. We turn now to beams in which load
is applied to one or both flanges.

Any case of flange loading can be considered as the sum of a symmetric system in which
two loads equal in magnitude and opposite in direction are applied to the two flanges and
an asymmetric system in which the loads have the same direction. We shall for the moment
restrict our investigation to the symmetric system.

An approximate solution similar to that used in part I can be developed, but because of
the condition of zero shear in the web at the loading section it is possible to solve the problem
exactly.T We begin by considering the comparatively easy case of a flange resting on a semi-
infinite plate and then go on to develop the full analysis for a beam of finite depth. It is
shown that for most practical cases the simpler analysis is sufficiently accurate, and we
proceed to investigate the effects of the various parameters and to develop a formula for
the stress in the outer fibres of the flanges at the loading section.

* The approximaﬁon is that a/h, b/h and I,]A,h? are negligible compared with unity.
T Our analysis is basically a development of that of Filon (1903).
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6:2. Flange resting on a semi-infinite plate

Consider the flange shown in figure 16, subjected to a normal loading ¢(x) per unit length
and resting on a semi-infinite plate of thickness #,. Then if the end load, shear and bending
moment in the flange are P, S, and M,, and the edge stresses in the plate are ¢, and 7,,,
we have for the equilibrium of an element of flange (figure 17)

oP, |
i

gx T

08, {

—a"x— = (x) —twa'y, (61)
oM,
’——axb = Sb—aTxy. )

m‘\ AB’IB

neutral b
\ e S

%
L tw
Y

Ficure 16. Flange on semi-infinite plate.

19(@3#«“ | .
M+
M A4S, b b
P;,«—H - H“Pzﬁm’b
S +6Sy
’ Twytwc?m

Ficure 17. Equilibrium of an element of flange.

Denoting the displacements in the directions of x and y at y = 0 by z and v,

du P M, a

v _ Lo b
Ox ,,E+ LE’
(62)
o __M,
x*  LE
From equations (61) and (62),
Py . %
oy =~ AE {3+ ag).
ot ‘ AN (63)
o0y —q(¥) = (L+a4,) E5 4 +ad, E5 .
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Now let us apply the stress function
¢ = (C+Dy) e~ cos ax (64)
to the plate. The stresses are given by
0, = {—2Da+a?(C+Dy)} e~ cos ocx,]
7, = —a*(C-+Dy) e cos ax, f (65)
T,y = {D—a(C+Dy)} e*¥sin ax,
and the displacements by
Eu = {(1+v) a(C+Dy)—2D}e *¥sin ax, 1 (66)
Ev = {(1+v) a(C+Dy) +D(1—v)}e ¥ cosax—{(1+v) aC+D(1 —)},)

using the rigid-body conditions u = v = dv/dx = 0 at the origin.

Aty=0
7, = —a?C cos ax,
T,y = &(D—aC) sinax, (67)
Ey = {(1+4v) aC—2D}sin ax,
Ey = {(1+v)aC+D(1—v)}(cosax—1).

On substituting (67) in (63) and putting ¢(x) = cos ax, we find
. t,+20d4,+a?(1—v) 4,a
T a2 ++2034,t,+2(1—v) atad, b, + 245 (1, + a?4,) t,,+a5(1+v) (3—v) 4,1, (68)

t,+a(l4v) A,—a?(1+4v) Aya
o282 42034, ¢, +2(1 —v) atad,t,~+ 2051, +a4,) t,+a8(1+v) (8—v)4,1,)"

D= ——oc{
Now by Fourier’s integral theorem, any even system of loading ¢(x) can be put in the form
q(x) = gfwdoszq(x) cos ya cos ax dy

mJo 0
= wa(oa) cos ax da, (69)
0 -
where F(a) = %qu(x) cos xo. dy. (70)
0
Let us suppose ¢(x) to be constant at £ between x = 4+1/Q. Then

F(a) = gf e cos xa.dy

mJo é‘
1Q . «
==X 4in— 1
- st, (71)
whence q(x) = f :—71; g—sin%cos ax da. (72)
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From equations (67), (68) and (72) the boundary stresses appropriate to this form of loading
are given by

t,+20d,+a%(1—v)ad,

B L
%= fo m o QCOS axa2t1§,+2a3Abtw—l— 2(1—v) atad,t,+2a%(1,+a?4,) t,+a5(1+v) (3—) A,,Ibd“’
(P Qx. «. a(l—v) 4,+202a4,
Ty = fo o S SN T Yo (1 ) dad, i+ 22, + A T T B E7) (B—n) 4, T, %
| (73)
P We consider first the particular case ¢ = 0, 4, = 00, when
oy ? Q & 1
— o, = f —§in — COS ax — da. (74)
;5 . v Jom T Q a{1+(1+v)2(3 V)%as}
F w
2 - For ) = oo (unit point load)
= O . Cos ax
o, = de
= Lo
w 2 /3
172 w
<Z :
S0 _ J‘“’cos;;x/.] 1
gF . =), Tos, TR (78)
Q<o -
oz where n=Jua,
=< ,
= Jo_ (149 (3-1)1, (76)
2 i,
2
When x = 0, 0, = m, (77)

the general curve is plotted in figure 18.

0-4

0-3

A \
I

A A

SOCIETY

0-1

THE ROYAL A

x|J

Ficure 18. Transverse stress between flange and plate.
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442 E. W. PARKES ON
- For finite values of @, we have from equation (74)
= [y s fina{g+) +sine (5-3) )
ay-f0 St sina @+x +sina g x a{1+(1+") (3"’)&“3}(1&
2 ,
_[® Q sin¢ [ 1 1
o fo ont, ( 1+c3§3+1+d3§3 d¢ (78)
for points inside the load, and
°°Qsin§[ I 1']
fo o, ¢ L1700 13de]% (79)
for points outside the load, where
c=J / (%+x) ,
. (80)
d=|7/(5-)|-
[
1-5 '
3 10l
N
A+
. 56 0-5
—
! | —
0 5 - 10 15
6 .
Ficure 19. The function fo als—l—_{r_lﬁggsdé’.
The function J 0°° z(%rigg_gﬁ d{ is shown plotted in figure 19. From it g, for any value of

x can be obtained. Figure 20 shows ¢, as a function of x for @ = 1/2¢,,* v = 0-3, and various
values of 7,. It will be seen that, as would be expected, increasing flange stiffness distributes
the load farther over the plate. Figure 21 compares the value of 7, at the origin for Q = 1/2¢,,
with that for @ = o0, for various [,. Over the practical range the two are identical, and
so we shall in future restrict our investigation to the case @ = oo (i.e. a point load).T It may
be noted that equation (79) gives us an alternative method of calculating ¢, for @ = co,
since in the limit it becomes

("3 gn 7’
ay—fo 7Tthsmj (l+773)2d77' (81)

* J.e. with the load distributed over a distance equal to four times the web thickness.
+ Experimental work by Hendry (1949) supports the analysis in suggesting that the load distribution
is unimportant.
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T, for a =0, 4, =00, @ = oo may be written from equation (73) as

R el sin 1% d
w = )y ent, I T 18T

T (82)

It is plotted in figure 22.
Lt
(A

025 / i&)
/? 100

V4 I ————
4 2 0 ‘ 2 4

x[t,
Ficure 20. o, as a function of ,. Q@=1/2¢, v=0-3.

0-25

=0)

o, (x

| ]
0 1 2
logyo 1/t

Ficure 21. o, at the origin for @ =1/2¢, and o0, »=0-3.

02

x|J
Ficure 22, Shear stress between flange and plate.
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444 E. W. PARKES ON
The shear in the flange, S, is obtained by the integration of equation (75) as
- ’*’.1. in 7%
S, = —sin J”(1+”3)d7]+2 (83)

'This is plotted in figure 23, and by consideration of this curve it may be shown that the shear
deformations of the flange, which we have ignored in our calculations, are in fact negligible.

0-5

x[J

Ficure 23. Shear in flange.

The bending moment in the flange must now be obtained. On'integrating equation (83)

we find
©J X 1 x
M,,-Mb():—f 77( —cos ”) s d?}—l—é

J p?(1+9%)
- —cos eac¥N T X
= f ( cos ) d;;—f—f ( cos J)‘l—{»r;f’ 7+5 (84)
Now the first and last terms in equation (84) cancel out, because
*J
fo - (l—cosj) dy
x (1 —cos 2z)
- fo m 272 dz
f xsin®z
T Jom 22
2?
n_1
whence M —-M, = f (1 —cos J) 179 dy. ~(85)

Now M,— M, is finite throughout the range of integration, so that as x tends to infinity,
the contribution to the integral of the rapidly varying function (1—cosxy/J) will tend to
its mean value, i.e. unity. Thus, since M, = 0 at x = o0

__ (I
M”°—_fo ;l—i-ﬂsd”
oJ
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STRESS DISTRIBUTION IN A FLANGED BEAM 445
_x o 2J >J xn 1
and M= =575 ], 7 (17 F) (87)

M, is plotted as a function of x in figure 24.

0-4

= 02

| ] J
0 1 Cme——2 ) , 3

x|J

Ficure 24. Bending moment in flange.

The stress in the outer fibre at the loading section may be obtained from equation (86) as

2J b
(0,)g= EWEA W, where W is the applied load,
= 04644 —— Wenb 5/1, for v = 0-3. (88)

T N

6-3. Beam of finite depth

We have up to now considered the problem of a flange resting on a semi-infinite plate
for the particular case a = 0, 4, = co. Before investigating the effects of different values of
a and 4,, we shall first develop the analysis for a beam of finite depth. From physical con-
siderations it is apparent that a beam of very large depth will be equivalent to a semi-infinite
plate; what we have to determine is whether our simple analysis is sufficiently accurate
for the depths of beam encountered in practice.

0y tw 0%
Ty b 0% v
My Sy Mb+8Mb
P,,«—H H—
Sb+8Sb
Lq(w)b‘w

Ficure 25. Equilibrium of an element of flange.

The beam is shown in figure 1, and from the equilibrium of an element of flange (figure
25) we have |

Pu %
bty = A E (g —ag), |

o o (89)
a0, — (%) = —B(l,+a4,) 5= o +Ea adyys .

w- Yy
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446 E. W. PARKES ON
This time we apply the stress function
¢ = (Ccosh ay -+ Dy sinh ay) cos ax (90)
to the plate and obtain . ‘
o, = {(Ca?+2Da) cosh ay 4 Doy sinh ay} cos ax,
g, = — (Ccosh ay + Dy sinh ay) o® cos ax, (91)
7,y = {(Ca+ D) sinh ay 4 Day cosh ay} asin ax,

and Eu = {{Ca(1+v) +2D} cosh ay + Da(1 +v) y sinh ay} sin ax, (92)
Ev = —{{Ca(1+v)—D(1—v)}sinhay+D(1+v) ay cosh ay} cos ax,
with rigid-body conditions ¥ = v = dv/dx = 0 at the origin.
Aty =nh,
Eu = {{Ca(1+v) +2D} cosh ah+D(1+v) ahsinh ah} sin ax,
Ev = —{Ca(14v) —D(1—v)}sinh ah+ D(1 +v) ah cosh ah} cos ocx,] (93)
0, = —{C cosh ah+ Dhsinh ah} a? cos ax, J
T,y = {(Ca+ D) sinh ah -+ Dah cosh ak} e sin ax.
Substituting (93) in (89) with ¢(x) = cosax,
[, (sinh ak+ah cosh ah) +ad,(2 cosh ak -+ k(1 +v) sinh ak) )
C— —a?4,a{(1+v) ahcoshah— (1—v) sinh ak}]

[ — a2 h—a?2 sinh ah cosh ah—24,t, 03 cosh? ah ’ _
+24,at,,a*{(1+v) ah—(1—v) sinh ak cosh ah} —2(1, +a?4,) t,,0° sinh® ah| (94)
+A,1,05{(14v)2ah— (1+4v) (3 —v) sinh ak cosh ak}]

D - —% sinh ah—a?4,(14v) coshah+aad,(1-+v)sinhak
- same denominator ’ )
whence
_ —a?t, sinh ah cosh ah—a’ht,—24,0° cosh? ah— A, ax*{(1 —v) sinh ak cosh ah— (1 +v) ah}
v denominator of (94) ’
(95)

which reduces to the same form as in equation (73) for large £. _
Simplifying the expression by putting ¢ = 0, 4, =00, we find on applying Fourier’s
integral theorem for a unit point load,

© 1 cos ax da

o T, (1+v) (3—v) _(A+v)2 ah &3,
1+{ 2 tanh /s 2  cosh? on/z}_t;:

Oy = (96)

(compare equation (75)). ,
The value of ¢, at x = 0 is plotted as a function of £ in figure 26, where it will be seen that
in the practical range there is little change from the value for the semi-infinite plate.
On integrating equation (96) twice we obtain the bending moment in the flange as

’ (e 1 (1 —cosax)da x
M, =My, *L ﬂtw“21+{(l+v) B onnap EHV)° ok L, 2’
, 2 % 2 coshzoclz} L,

(97)
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STRESS DISTRIBUTION IN A FLANGED BEAM 447

whence, by a process similar to that used previously,

{(1 +v) (3—v) tanh o — (1+v)2  ak }al,,

© ] 2 2  cosh?ak
Mbo:fo w1+{(1+v)(3 ) anhah—~<1+v) d}l }0.’,3[ d (98)
2 2  cosh?ah

M, is plotted as a function of % in figure 27. As with g, the values approximate closely to
those for the semi-infinite plate, within the practical range. Accordingly we shall now
return to the simpler analysis and assume that % = oo is sufficiently true for our purposes.

0-4—
symmetric loading
h=0o0
03 asymmetric loading
] o$
04
% l"_ most
b pr actical
beams
0-1
! ] J
0 5 10 15
I
1,
FiGure 26. o, at x=0 as a function of 4.
0-8}-
0-6— asymmetric loading
h=x
+JP
B.g 0-4} symmetric loadin
p Taylor’s analysis
0-2H most
ractlcal”l
bea.ms
L ] 1
0 5 10 15

J7)

Ficure 27. M, as a function of A.
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448 E. W. PARKES ON

6-4. Effects of various parameters
From equations (73), the bending moment in the flange at the loading section,

w1 2al,+a?(1+v) (3—V)i4§’-{1’
M,,Oz—f 1 S 7 de. (99)
Tt 4204, +2(1 —v) a2ad, +203(I, -+ a?4,) +a4(1-+v) (3—v) o

Two special cases can readily be evaluated. First, when 4,/tZ = 0 or when [,/t} = 0,

b/t #OO 5]
M, = —f 1—2“—1—3—doc
0 o M, + 2031,
s/1,
- 3J3 V243,
= ~O'484twf/—’?.* (100)
tw
Secondly, when 4, /2 = o0, aft, = 0, v = 03,
1,
M, = ——0'464twf/21’ (101)
from equation (86). !
[b/tfu
05 1 : :
—— s —
Sy \\\ 10000
04— 1
S o0
. J | i
o3 500 1000 1500
4,/

Ficure 28. M, for aft,=0.

General curves of M, for aft, = 0 and 10 are plotted in figures 28 and 29. It will be seen

4
that for small values of 4/t Af”“ j’/tli” is practically independent of 4,/:2 and 1, /¢, as would
w b

be expected from the near correspondence of equations (100) and (101). For higher values
of a/t,, this is no longer true in general. For practical beams, however, large a/t, are
produced by small values of ¢, which in turn means that 7, /! is large and the value of
Mbo 3 t4
I,

We thus see that the bending moment in the flange at the loading section may be repre-
sented with reasonable accuracy by equation (100). This equation does in fact set an upper
limit which will never qu1te be achieved in practice. Most practical beams fall about 10 9

¥ approximates to the I,/tf = co solution, i.e. that given by equation (100).

#
short of it. For example, the undercarriage girder discussed in part I gives 2 Mb" > I = 0-422.

Theresults for the three mild steel experimental beams of part III are summarlzed in table 1.

* This equation also holds for the case of a flange resting on a smooth plate and has been deduced in
the solution of this problem by Biot (1937).
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TABLE 1
. Mbo3 it
beam no. aft, ‘ 4,/ Lt 1, N T,
1 30 2700 810000 0-434
2 10 300 10000 0-422
3 3-3 333 123-5 0424
1|5,
0-5— : ©
10000
0-4—
o= 0.3
=7
0-21—
100
0-1 ] I |
0 500 - 1000 1500
4,1t

Ficure 29. M, for aft,=10.

The end-load in the flange at the loading section may be obtained by the integration of
equation (73) as

> g2 w 52 —
Pztw=J Ly (L) +20a Wi de. (102)
b Tt +2ad,+2(1 +v) a2ad,+203(1,+ a?4,) +at(14v) (3 —v) =22
2
When f—{zoo, P,,oz 0;
when ‘;1—12:’ =0,
Pbotg,_f”(lév) dat, Ll »2at, dat,
Ay do 1+%—f—’la3t§’:, fwlo 7 1+2t£” 3% (103)
P, 2 I N
whence 1 = 0-213+0- 484 1 (104)

' 2
General curves of PZ’ by s % as a function of 4,/#2 and I/t are given in figures 30 and 31
w

for a/t, = 0 and 10. It is not possible to develop a simple general formula for the deter-
mination of P, , and if this function is required with any accuracy for values not covered
by figures 30 and 31, it is best to calculate it directly from equation (102).

VoL. 244. A. 58
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The outer fibre stress at the loading section may be written as
| bt‘**MA/t‘* BN P, 25/
2 — 2 (Zw) | 2Tk 3/ w w bo"w3/h
eanth = (2) oz ) ) (105)

where the terms in square brackets are the functions we have obtained previously.

0-20
o

«T\J‘

1 ! 0-15F

NI

@) : 3

= 28 . 010

E @) nﬂ@ ~

o

= uw

= )

=0

==

o5

CIJ< 0

gv | | 1

='<Zz 0 100 200 300

- 4,08,

Figure 30. P, for aft,=0.

0-25
0-:20

A

L <@ B
! s 015
= o
el SN
= 0-10
= O
L O
= w

0-05—

/
0 100 200 300
4/ts,

Figure 31. P, for aft,=10.
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s/,
J i is of the order of 80 to 90 %, x 0-484. We have no general expression for PZ’: 'ffo s

but it is found that for practical beams with conventional rectangular or T-shaped flanges
that the contribution of the end-load to the outer-fibre stress is 10 to 20 %, of that of the

bending moment and of the same sign. As a result, the sum of the two terms in equation
414
) This correspondence is shown for

M,,0

(105) is found to approximate closely to 0 484tb (tI
w b

the experimental beams of table 1 in table 2.

TABLE 2
beam ¢ b 4, Lo Meofi Dol IR TWE o gasa? (B
no. 14, f P 1 b, VI, A4, A1 1, 4, WL I,
1 30 30 2700 810000 0-434 0-0195 0-00150 0-00021 0-00171 0-:00168
2 10 10 300 10000 0-422 0-0391 0-0090 0-0018 0-0108 ~0-0105
3 33 33 33-3 123-5 0-424 0-0622  0-057 0-012 0-069 0-065

We thus see that for most practical beams we may express the outer-fibre stress at the
loading section due to two symmetric loads W applied to the flanges as

Wb
(7. = 04845 t'(l_,,) . (106)
For beams of very unusual section it may be advisable to consult figures 28 to 31 or to cal-
culate from equations (99) and (102).

7. EQUAL AND SIMILAR LOADS ON THE FLANGES

In § 6 we saw that the outer-fibre stress produced by the application of two equal and
opposite loads to the flanges was substantially the same as that produced by the application
of a single load to a flange resting on a semi-infinite plate. We now proceed to determine
whether a similar correspondence is obtained when the loads are in the same direction.

The beam is again as shown in figure 1 and from the equilibrium of an element (figure 25)
we obtain the same equations (89). This time, however, we apply the stress function

¢ = (Csinh ay + Dy cosh ay) cos ax (107)

to the plate. The subsequent analysis is similar to that of § 6, and for a=0,A4, =0 and
a point load we get

* 1 cos ax da

o,=| - — =7 (108)
0 ”‘w1+{—~——-———<1+”) B=2) o h+(1+") ah }ﬁ—l—”
sinh?ah

The value of ¢, at x = 0 is plotted as a function of % in figure 26, and once agam there is
little change from the # = co values in the practical range.

The bending moment in the flange at the origin is given by
— 2
{(l+v) (3—v) cothah- (1+v) ah }al

2 sinh? ok
M, f d (109)
0 t,, (1+v) (83—v) (l+v)2 ak )il
1+ { 2 cothak+ sinh? oah}

and this is plotted as a function of % in figure 27. As with ¢, the values are close to those for

the semi-infinite plate.
58-2
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452 E. W. PARKES ON

We thus see that both for symmetric and asymmetric loading the theory for the flange
resting on a semi-infinite plate may be applied with sufficient accuracy to the beam of
finite depth, and since any type of flange loading can be obtained by suitable combination
of these two solutions, we can write quite generally, for the outer fibre stress in the loaded
flange at the loading section due to a load W applied to one flange of a beam,

Wbh (t‘*)

(Ux)H - ( x)H eng. +0- 484 t (110)

I,

8. FULL ANALYSIS APPLIED TO A NUMERICAL EXAMPLE

It will be remembered that in deriving the fact that beam depth, 4, has little effect on
outer-fibre stress, we made use of the simplifying assumption a = 0, 4, = 00. Itis proposed
now to investigate an example in which ¢ and 4, have finite values, to check that the semi-
infinite plate solution is still a good approximation to that for the practical beam. The
analysis is developed quite generally, but numerical application is limited to the under-
carriage girder of figure 2.

For the symmetric loading case,
® 202a4, sinh?ah—a?hA,(1+v)+ (1 —v) a4, sinh ak cosh ah

[ —#2ah—t2sinhah coshah—24,¢,a cosh? ah
—l— t,ad4 a2{2( 1+v)ah—2(1—v) smh ahcoshak}—2{I, +a?A4,}t,a®sinh? ah,
+ A4, 1,0 (1+v)2ah—(1+v) (3 —v) sinh ak cosh ah}]

1 .
T o= sin ax da,
m

Xy

(111)
and on integrating
_ _f 20ad, sinh? ah—ahA,(14v) 4 (1 —v) 4, sinh ak cosh aﬁda (112)
Fro = denominator of (111) '
Further,
J © [t,ah+t,sinh ah cosh ak+ 24, a cosh? ak
LV +ad,{—(1+4v) adh+(1—v) a?sinh ak cosh ak}]
g o= b 113
Y mdo denominator of (111) cosax da (113)
and

» [A,at,{— (14v) ak+ (1—v) sinhak cosh ak}+2{I, 4 a?4,} ¢, a sinh? ak
+A,I,0*{— (14-v)?ah+ (1+v) (3 —v) sinh ak cosha/z}]d

1
M, = P,,oa—l——[

mdo denominator of (111)
(114)
For the asymmetric loading case
1= 20%ad, cosh?ah+a?h(1+v) A,+ (1 —v) ad,sinh ak cosh af sin ae do
Tw = 7| [Rah—sinhak coshah—24, 1, sinh? ok )
—t,ad4,0%{2(1+v) ah+2(1 —v) sinhak cosh ak}— 2{I, + a?4,} t,,o® cosh? ah
0 — A, I,a*{(14v)?ah+ (1+v) (3 —v) sinh ak cosh ak}]
(115)
Now when # is large, we are interested in small « only, so
;o j A,(a+h) sin ax o
W, ) 21,24, (a+R) 2§t R
_ 1 4,(a+h) (116)

t, 21, +24,(a+h)2+4t,h%’
the engineers’ theory value.
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STRESS DISTRIBUTION IN A FLANGED BEAM 453

- The end-load due to stress concentration,

_t, f {2ocaAb cosh?ah+ahA,(1+v)+ (1—v)A,sinhak coshak
Py = denominator of (115)

24,(a+1h)

+ ot (2l ¥ 24,(a+ h)E 1 3, /z3}} do - (117)
The transverse stress _
f» [—¢,ah+t,sinh ah cosh ah+ 24, asinh? ak
1| +ad{(1+v) a*h4- (1 —v) a®sinh ah cosh ah}]
T "ndo denominator of (115) cos qx das (118)
and the shear in the boom due to stress concentration
o[ —t, ah-+t,sinhak cosh ah+ 24,0 sinh? ok
S _@J +ad,{(1+v) a*h+ (1 —v) a?sinh ah cosh ah}] sin ax da
b7 mdo denominator of (115) «
h{A,(a+ k) +3h%} (119)

oI, + 24, (a+h)2+ 5t S

where the last term represents the shear at ¥ = 0. It should be noted that it is not —4,
since engineers’ theory accounts for

I,+A4,a(a+h)
of, +24,(a+ k)2 + 3t b

This difference ensures that S, tends to zero for large x.
The bending moment in the flange at the loading section can be obtained in the usual
way as
» ([A,at,{(1+v) ah+ (1 —v) sinh ah cosh ak}+ 2{I, +a%4,} ¢, cosh? ah
M, —P at J +A4,1,02{(14+v)2ah+ (1+v) (3 —v) sinh ak cosh ah}]
bo = Too denominator of (115)

24,a(a+h)+21,
~ 2@, + 24,(a+ R+ g [0 (120)

On substituting the numerical values appropriate to the undercarriage girder in equations
(99), (102), (110), (112), (114), (117) and (120) we get the comparisons of table 3.

TABLE 3
M, bo P be (o-x)H
loading condition and type of analysis Lb.in./Lb. Lb./Lb. Lb./in.2[Lb.
semi-infinite plate exact analysis 0-907 —0-546 0-817
symmetric loading exact analysis 0-731 —0-131 0-556
asymmetric loading exact analysis 0-946 —0-004 0-663
simple formula 1-042 0 0-729

It will be noted that the bending moment for symmetric loading of a beam of finite depth
is less than that for the semi-infinite plate, and that for asymmetric loading it is greater, as
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predicted by figure 27. The decreases in P, for the beam of finite depth can be predicted
by considering end-load equilibrium for the symmetric loading case, and moment equi-
librium for the asymmetric case. The simple formula gives an estimate of the outer-fibre
stress somewhat in excess of the true values.

By adding together the symmetric and asymmetric loadings in equal proportions we
obtain the case of load applied to one flange only. The total stresses in the flanges of the
undercarriage girder for this type of loading and L/k = 5 are shown in figure 10. They are
compared with those due to engineers’ theory and the analysis of part I. It will be seen
that the stresses in the unloaded flange are similar to those obtained when the load is applied
through the web; this is to be expected since the only local perturbations (those due to
making §, = 7,, = 0) are the same in both cases.

PART III. EXPERIMENTAL EVIDENCE
9. EXPERIMENTAL RESULTS

As a means of providing some practical check on the preceding analyses, three mild steel
beam specimens were obtained ; their cross-sections are given in figure 32. Electrical resist-
ance strain gauges were affixed to the inner and outer faces of the booms and these were
calibrated iz situ by applying four-point loading (pure bending) well away from the strain-
gauged sections.

all specimens 18 in. long

i -1 1
0-067

Za E::{
ER
G022 0-200
—pull—
3
&

specimen no. 1 specimen no. 2 specimen no. 3
built up machined from solid

Ficure 32. Experimental beams.

The method of determining the stress concentrations was as follows. Suppose that under
pure bending a gauge reading (percentage change of resistance) per unit bending moment
is R, and that under any other form of loading it is R,. Then the stress concentration, which
we will denote by (0,), is given by

R
(ax)s = (_R*T“I) (Ux)eng.° (121)
It will be noted that this method of calculation depends only on the assumption that

engineers’ theory gives the stresses correctly when the beam is subjected to pure bending:
it does not depend on any knowledge of the gauge calibration constant and errors due to
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STRESS DISTRIBUTION IN A FLANGED BEAM 455

such causes as incomplete adhesion of the gauge and dead resistance in the bridge circuit
are largely eliminated.

In the experiments to check the analysis of part I, the beams were loaded by means of
friction clamps attached to the webs. These are shown, together with a general arrangement
of the test rig in figure 33. Each.specimen was tested for a short and a long span (L/k = 3-5
and 6-5) and the values of (0,) obtained are compared with the theoretical curves in figure
34. Figure 35 shows the experimental results for the thin web specimen under the short-
span loading compared with the theoretical stresses according to engineers’ theory and
according to the analysis of part I. It will be seen that in this extreme case engineers’ theory
not only predicts the wrong magnitude for the stresses on the inner face of the boom, but is
actually wrong in sign.

e
I
o
O
I
o
LO
)
Igee|
o

=
[t
11
O £I3
o 5
il
il
s «i
iEw
D—"

=
—
i

. Ad ‘o)

Ficure 33. General arrangement of test rig, showing three-point loading applied to web.

A second set of experiments was carried out (for L/ = 4-25 only) in which the beams
were subjected to equal and similar flange loads by means of the rig shown in figure 36.
(The rods are pre-compressed and then the incremental loads are applied equally to each
flange because the cross-beams are very flexible vertically compared with the rods.) The
results are compared with the theoretical curvés due to the simplified analysis of part II
in figure 37. ,

Finally, the medium web specimen only was tested for L/k = 3-5 with the load applied
to one flange only. The stresses obtained are compared with those from the full analysis of
§6-3 in figure 38.
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specimen ()

>

lr/_A

-1 .
| | i ! |
0 05 1-0 1-5 20

%, inches from loading section

Ficure 34. Theoretical and experimental values of (o) for mild steel beams loaded through the
web. The stress concentrations are plotted to such a scale that the engineers’ theory outer fibre
stress is unity at the loading section for L/k=1.

experimental
theoretical L'//z =35 Lih=65
outer face of boom upper line ® A
inner face of boom lower line O A
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engineers’ theory analysis of part I
6 —
4 L
éﬁ outer face of boom
, b
f 2
{ inner face of boom -
0 J
6 4 6
%, inches from loadingsection
Ficure 35. Stresses in specimen no. 1. L/h=3-5, web loading.
D [ T T S,
oYY [
e e — e ,
R===| Mmom E
[ ! ! 1 i ! [ ]
C )
U
[]
ool i~ Miecl
&
. CI;.I; \L'J [ v U
Ficure 36. Rig for applying equal loads to flanges.
10. STATISTICAL ANALYSIS OF THE RESULTS
Strain-gauge readings as taken during a structural test are nearly always in the form of
a table or graph of percentage change of resistance (measured on the biidge circuit) against
applied load (measured on the testing machine). The load application is in general more
accurate than the strain-gauge readings and so in the following analysis we shall assume
that the applied load (W) is our independent variate and that all the error occurs in the
percentage change of resistance (r).
Let us suppose that there are x readings at equal intervals of load w, as shown in figure 39.

VoL. 244. A. ‘ 59
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specimen (0z)s
12~
®
8
4 -
1 o O
- no. 1 0 — —u
{ o —
_.4 -
-8
—-129-
no. 2
8 o
4
no. 3 0
| _..4
~8 ! ! | |
0 05 1-0 1-5 2:0
%, inches from loading section
Ficure 37. Theoretical and experimental values of ()5 for mild steel beams with two equal loads
applied to the flanges. The stress concentrations are plotted to such a scale that the engineers’
theory outer fibre stress is unity at the loading section for L/f=1. The upper lines (at x=0)
refer to the outer face of the boom and the lower to the inner. All tests carried out at L/h= 4-25.
Experimental results: @ O. The theoretical curves are derived from the simplified analysis of
part II, §6-2.



http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

STRESS DISTRIBUTION IN A FLANGED BEAM 459

length of a strain-gauge element;
‘the gauge measures the mean stress in this range

expt.
}respults

<« Oe

(a) Superimposed stresses

The stress concentrations in this
diagram are plotted to such a
—Yﬂ scale that the engineers’ theory
outer fibre stress is unity at the
loading section for L/hA=1

2:0

(6) Total
stresses

— length of
a strain-
gauge
element

o /W

o} expt.

results engineers’

theory
analysis of
part II,§8

%, inches from loading section

Ficure 38. Stresses in specimen no. 2, L/h=3-5, with load applied to one flange.
The theoretical curves are derived from the full analysis of §8.

59-2
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A regression line of slope ¢ can be fitted to these results by means of the method of least
squares, i.e. the line is given by the equation

r=E4-0W, (122)
where 0 — x(W— W)__(_r"‘;) ,
L(W—-w)? (123)
E=r—0W,

the bars referring to arithmetic means. This particular line has the property that the sum
of the squares of the deviations of 7 from it is a minimum.

| @@é\o&\
» (e,bo \"\(\e’
/
1
0/ ) >
yd
(p=1)w W

Ficure 39. Strain-gauge readings.

Then the variance of 7 about the regression line is independent of I/ and equal to ¥2, the
universe variance for the particular type of strain gauge and circuit used. ¥2 may be known
from previous experience or an estimate of it may be made from

Spr—i—owyp
1

r=2
The factor x—2 is used to give an unbiased estimate, rather than u, because two of the

degrees of freedom of the system have already been used up in obtaining the regression line.
The standard deviation of 6 is given by

Vo = ¥, IZ(W—-W)2 (125)

q; = (124)

_ ¥ 12 }%
Cw w(@-1))° 126)
and thus the coefficient of variation
Vo _ Vv {12(ﬂj)}*
0 Teor, L u(p-+1) ) (127)

where 7., is the total range of 7.
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Having a value for reading per unit load we shall next require to obtain a value for
reading per unit bending moment at the section considered. Assuming as before that W is
known accurately, the errors in the bending moment will depend on the errors in the
geometry of the loading system (inaccuracies in the position of the clamps, the difficulty
of defining exactly where theload acts on the bearing surface, etc.). If the standard deviation
of any measurement of length is ¢,, it may be shown that for pure bending

= o (125)

where L is the distance between the loading points, and for the centrally loaded beam,

Y _ (1Y (129)

M~ NBL”
where L is the semi-span.
The coefficient of variation for reading per unit bending moment can now be obtained as

2 24

R I o
Having the coefficients of variation for R, and R,, the readings per unit bending moment
under pure bending and central loading respectively, we find from equation (121)

M5+ (7 Jeng ) = W H AR (131)
Now (0,)eng. depends on assumed geometric properties only and so introduces no further
crvor, whenee ()= I (0 (e (132
In the actual experimental work (7,), was generally small compared with (0)eng.» SO We
may e H0: = W ) (0. (133

In plotting the results, the experimental values of (¢,), have been multiplied by L/
and we have made (¢,).,,, approximately equal to unity, whence

Vo= ey (134

As an example we consider the following figures obtained for the same gauge of specimen
no. 2 under (@) a test with pure bending and () a test with central loading:

(@) (®)

Tt 0-120 0-060
¥, 0-02 0-02

p 16 12

/0 00136 0-0307
v, 0-02 0-02

L 4-375 4-375
Yl M 0-0141 0-0086

Ag, 0-0196 0-0319
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462 E. W. PARKES ON
Combining these Y (0,), = 3-5{0-01962+ 0-03192}
— 0-131. (135)

Now tests have generally been carried out to about the same total load (except for the
pure bending calibration tests which were taken higher to ensure accuracy) and with the
same load increments, so that the effect of increasing L/A is to decrease /0 and ¥,,/M and
therefore A, proportionately. A, , the pure bending calibration value, remains unchanged,
but since it is smaller than A, the net effect is still to decrease {A% +1%,}} roughly as %/L,
and so we find that variations in L/k produce little change in y(c,),. Similarly, ¢ (c,), is
about the same for all the specimens, since these were of the same depth, almost the same
second moments of area, and were similarly strain gauged.

The results of a number of calculations of ¥(¢,), similar to the one set out above have
shown that for all our experimental results we may with sufficient accuracy take

Y(o,), = 0-15. (136)
&
5
g Theoretical
\. curve
i o :
b o Experimental
values
x

Ficure 40. Stress concentrations, theoretical curve and experimental values.

Turning now to the comparison of the theoretical curves with the experimental values of
(d,)s let there be p observations (o,), and let the corresponding theoretical values for the
same x be (7,) (figure 40). We assume « to be the independent variate and we set up the
null hypothesis that {(¢,),— (7,)s} are a set of observations drawn from a universe of mean
zero and standard deviation ¥ (0,),. Then the experimental arithmetic mean is

D{CARICAM; | 4
X/888) __ 5 137
7 p (187)
and the experimental standard deviation is
2_{(&%_ ((Tx)sss}2 ! —
{ ) ——} —q |  (139)

It may be noted that the divisor in the second equation is p, not p —1, since we are using an
arithmetic mean of zero, not p. ‘
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Now, using the 5 9, significance limits as our criteria,

o should not exceed £,¥(a,),, [

(139)
g should not exceed /(F,) ¥(7,),,]

where ¢ is ‘Student’s’ ratio depending on the number of degrees of freedom of ¥ (s,),
(0o in the present example) and F| is a function depending on the number of degrees of
freedom of ¢ and ¥ (¢,), (p and co in the present example) (see Davies 1949).

Table 4 gives the values of p and ¢ for the mild steel experimental beams.

A A

p
A
JA '\

__;‘ ) TABLE 4

;5 e Tests with load applied to the web (figure 34)

@) : Lk p q

(7 = specimen no. 1: outer fibre 35 —0-03 0-38

23] : 6-5 0-23 0-34
= inner fibre 35 —0-18 0-32

LT O

= 6-5 —-0-05 0-30

specimen no. 2: outer fibre 35 —0-14 0-22

3z 65 —0-11 012

Yo inner fibre 3:5 0-01 0-13

I= 65 —-0-10 0-13

8 i specimen no. 3: outer fibre 35 —0-11 0-22

o) P

ag O 6-5 —0-01 0-22

Oz inner fibre 35 —0-06 0-13

E§ 65 0 0-04

&=

Test of specimen no. 2 with load applied to one flange (figure 38)

p q
loaded flange:  outer fibre 0-11 0-21
inner fibre 0-10 0-20
unloaded flange: outer fibre 0-11 0-15
inner fibre 0-12 0-20

No attempt has been made to analyze the results for the equal-flange loadings shown in
figure 37, since the theoretical curves are those due to the simplified analysis. The full
analysis has not been applied to all the cases of flange loading, owing to the very heavy
arithmetic work involved. -

For each of the values of p and ¢ quoted above, p has a value of 5, so that we must use the

yA \
V. \
AL A

> values of ¢, and F, appropriate to (5) and (5,00), i.e. 1:96 and 2-21. Accordingly the maxi-
< . s Approp gly

S E mum permissible values to satisfy the 5 9, significance limits are

= p = 1:969(c,), = 0-29,

O - (140)
o q = 1-49Y(s,), = 0-22.

= w

It will be seen that all the results satisfy these values with exception of specimen no. 1
under web loading. Here the mean value is satisfactory, but there is an abnormal scatter.
This may be attributed to the method of manufacture. Specimens nos. 2 and 3 were
machined from solid black bar and were free from warping. Specimen no. 1 had too thin
a web for this method to be successful, and so a 24-gauge sheet metal web was brazed into
slots cut in the booms: the unequal heating occasioned by this process caused considerable
pre-buckling of the web.
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464 E. W. PARKES

PART IV. COMPARISON OF THE ANALYSES OF THE PRESENT
PAPER WITH OTHER RECENT WORKT

~11. TAYLOR’s (1949) ANALYSIS

By considering the web as shear-carrying only and from the equations for compatibility
of displacement at the web-boom junction, Taylor obtains the bending moment in each
flange at the loading section due to two equal and similar flange loads W as

Wy 2L\ R\ ([EL I, )}%
My, =5 (=) (ra len s (el (141)
which reduces for @ = 0, 4, =0 to

z 177
W (2(1+v) L)}
M,, = é—{l%} . (142)

Our expression for the bending moment (from §7) is

o {Qj—l)-(g_v)cotha/z+(l+y>2 ah }aIb
1 N

2 2 sinhZahf ¢,
Mbo: w %‘L‘;l_‘_{(l_l_y) (3——1)) T h+(1+v)2 ok }o—%d“, (143)
0 2 cotha 2  sinh%ah) ¢,
which reduces for small values of 7 to
1 2(1+V)ZI—E
Mbﬂ = W T waz-[ dOC
"J1+2(1+u)t—b
W (2(14v) 1)}
=?{ Wi )J} : (144)

We thus see that Taylor’s analysis is equivalent to ours provided 7 is small. For large values
of & our analysis tends to that for the flange resting on a semi-infinite plate; Taylor’s value
of M,, tends to zero. The difference is shown in figure 27.

f
50 - lg
12 12 J 12 12 13

T =T ———— 7|
& Lol | L&l 4o 4%-@» -
NI . o o Ry

Ficure 41. Taylor’s wooden beam. Spruce booms, birch ply webs,
10 g mild-steel plates glued to webs at loading points.

In his report, Taylor quotes experimental results for the wooden beam in our figure 41.
He applied his theory to this beam and found certain incompatibilities between the experi-
mental and calculated results which he attributed to the finite width of the loading plates.

+ Acknowledgement is made to the Chief Scientist, Ministry of Supply, for permission to publish these

extracts and figures. Crown copyright reserved. Reproduced by permission of the Controller, H.M. Sta-
tionery Office. "
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2:0

1-5—
simplified
analysis of part I

S Y p

= 10—

o Taylor’s
analysis
engineers’
theory

outer face of boom 0:8{= o
°
inner face of boom
o o
O
% | L
12 6 \
%, inches from loading section
Ficure 42. Taylor’s experimental results, L/h=5-33.
30
2:5
simplified
2-0— analysis of part I
Taylor’s analysis
=3
iy ~ engineers’ theory
1-5—
10—
outer face of boom
inner face of boom
0-51—
0 3 l [ l |
24 18 12 6 0

%, inches from loading section

Ficure 43. Taylor’s experimental results, L/h=10-67.
Vor. 244. A. 60
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By applying the theory of part I of the present paper to the wooden beam, we get quite
good agreement between the predicted and experimental stresses, and it seems more likely
that Taylor’s discrepancies were due to his applying a theory for flange loading to a beam in
which load was actually applied to the web (figures 42 and 43).

12. WINNY’s (1950) ANALYSIS

In Winny’s analysis, some attempt is made to allow for vertical compression of the web
and for rivet slip at the web-boom junction. Both of these quantities are presumed to be
proportional to the local vertical loading between web and boom and equations are obtained
for compatibility of displacement at the junction. As in Taylor’s analysis, the web is assumed
to carry shear only and the distribution of load between flanges and web at the loading
section depends on the geometry of the section and the coefficient of rivet slip. The area of
the boom is assumed infinite and the distance between its neutral axis and the rivet line, zero.

Winny obtains the bending moment in a flange at the loading section due to a load 2W as

o J PO, o
where K = J(kEL)/2t,hG, | (146)

and £ is the sum of the compressibility of the web and rivet slip in Lb./in.2. As would be
expected, when £ is very large, this solution reduces to the same form as Taylor’s for ¢ = 0,
4, = 0.

Winny quotes a numerical example in which

2W = 14000 Lb.

h = 6in.
t = 0-064in. (147)
Ib = 3‘5in.4

E = 10-5x 105 Lb./in.2
G = 3x 108 Lb./in.2

The compressibility of thé web, assuming the stress to vary linearly to zero at the neutral
axis, is 4:5 x 107%1in./Lb./in. ; the rivets are {% in. snap head at { in. pitch, giving a coefficient
of slip of 3 x 106 in./Lb./in. (Parkes 1947), whence £ = 133000 Lb./in.? and K = 0-96.

Substituting in equation (145) we get

- M,,=13800Lb.in. C (148)
By modifying the analysis of part II of the present paper to take account of rivet slip we find
that for flange loading M,, = 18300 Lb.in. - (149)

The discrepancy between equations (148) and (149) is almost entirely due to the fact
that Winny’s analysis leads to a distribution of load between flanges and web which is
dependent on the geometry of the section. The proportion of load carried by the web in-
creases with increase of the coefficient of rivet slip and, as may be seen from equation (145),
M, decreases. For the case when load is applied entirely to the flanges, we do not find this
to be so; according to our analysis M, increases with increase of rivet slip.
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